膜生物反应器的开发除了涉及生物处理理论和膜过滤理论问题外,真正能开发成产品的关键 是如何克服膜的污染和堵塞,使膜能长时间维持较大的通量,即在保持正常通量的情况下,尽量能延长膜的寿命;同时要降低曝气量,以减少工艺的电力消耗[1]。
本研究拟检验国产膜的可应用性,同时省去传统的出水抽吸泵[2],采用位差驱动出水,省去复杂的气或水反冲洗设备,低水头间断工作,尽量降低曝气量和动力消耗,以使开发的设备尽快投入实际应用。
1 试验方法和材料
设备如图1所示。反应器为聚氯乙烯塑料制造,矩形截面柱体(截面积为0.3m2),有效水深H=3.6~3.9 m,有效容积V=1.08~1.17m3(浮球阀液位控制器控制反应器的比较高和比较低水位,高低水位差为0.3m),反应器内置6只中空纤维膜膜组件。膜出水靠水位差驱动,集水管统一收集出水,出水流量由流量计调节控制。?
试验中采用的中空纤维膜组件及其特性如表1所示。
膜材质 | 膜孔直径(μm) | 组件表面积(m2) | 制造商 |
聚偏氟乙烯(PVDF) | 0.22 | 2.0 | 天津纺织工学院 |
中空膜生物床处理生活污水试验在1998年6月至1998年11月期间共采集数据约150d。设计出水流量200 L/h,采用间歇运行方式,运行期间无反洗,无人工及化学药剂清洗。原水采用人工配制模拟生活污水(见表2)。
成分 | C | CO(NH3) | KH2PO4 | CaCl2 | MgCl2 | CuSO4 |
浓度 | 300 | 22.5 | 7.32 | 0.8 | 1.0 | 0.002 |
试验装置运行的其他条件:?
① 曝气紊流:运行出水期间曝气气水比35∶1。
② 低压出水:出水流量采用阀门、流量计控制恒定,人为降低了出水水头。
③ 间歇运行:7min出水,3min停止出水空曝。
1.3 水质分析方法
COD分析采用重铬酸钾法,氨氮分析采用纳氏试剂比色法,溶解氧分析采用JPB-607便携式溶解氧分析仪,pH值分析采用PHS-2C精密级酸度计,浊度分析采用GDS-3B光电浊度计,细菌分析采用平板计数法。
2 试验结果与讨论
为了解国产膜的透水特性,用清水研究了出水水位差与膜出水量间的关系。在清水试验中,出水水位差与膜通量间呈直线关系,直线的斜率称为膜的比通量,即单位水位差、单位面积、单位时间的出水量。国产膜与国外膜的比通量比较见表3。从表中可见,该膜比通量较大,但机械强度较低,易于折断。
表3 不同来源膜组件的清水试验
膜来源 | 国产聚偏氟乙烯膜 | 加拿大膜 | 日本膜 |
膜比通量[L/(h.m2.m)] | 27.28 | 15.36 | 12.79 |
2.2 COD的降解和反应器中的MLSS变化
运行期间进水COD的平均值为366.4 mg/L,比较大值为780.9 mg/L,比较小值为228.0 mg/L。出水COD的平均值为13.1mg/L,比较大值为25.2mg/L,比较小值为4.4mg/L,COD的平均去除率为96.0%;冲击负荷对出水COD去除没有影响,这说明系统的稳定性和可靠性。试验结果如图2所示。
从运行结果看,国产膜分离性能良好,运行过程中无剩余污泥排放,MLSS变化如图3所示。
平板记数法检测出水细菌总数共三次(前期、中期、后期),细菌总数均<10个/mL,见表4.试验结果表明,采用膜生物反应器后,出水不需消毒,可直接回用。
表4 不同运行时间的细菌分析结果
运行时间(d) | 2 | 51 | 106 |
出水细菌总数(个/mL) | 8 | 0 | 3 |
2.4 出水浊度
出水浊度的分布如表5所示。95%的出水浊度<1.0NTU。试验中浊度>1.0NTU的情况都与装置调整有关:重新启动真空系统或调整浮球阀等。
表5 出水浊度分布
浊度范围(NTU) | 0 | 0-1 | 1-2 | >2 |
频率(%) | 69 | 26 | 2 | 3 |
2.5 膜通量变化与COD冲击负荷
在正常运转的情况下,采用出水控制阀控制出水流量衡定,此时出水流量为200 L/h,折合膜 通量16.7 L/(m2·h)。在出水控制阀全开的情况下,出水流量可以达到350L/h,折合膜通量29.2L/(m2·h)。考虑到工作水头,国产膜的性质与加拿大Zenon膜类似,而劣于日本Kubota板式膜[3]。研究COD冲击负荷时,短时间全开阀门,以观察比较大流量的变化,从而了解膜阻力的变化,如图4所示。?
在正常负荷条件下,比较大出水量非常缓慢地下降。从装置开始运行到第83 d,每天平均降低幅度约为0.6 L/d;而当冲击负荷出现后,比较大出水量呈现下降趋势,大约2d之后,出现大幅度下降,每天平均降低幅度高达7 L/d;当进水负荷正常之后,比较大出水量逐步回升。图5中给出冲击负荷出现之后反应器内MLSS的变化情况。
关于膜通量降低的原因可分析如下:COD冲击负荷使反应器内活性污泥浓度迅速增加,微生物进入生命活动旺盛的对数增长期,细胞繁殖速度加快,MLSS迅速增大说明了这一点。污泥浓度的提高增加了混合液的粘度,从而使液—固分离困难;同时处于对数增长期的污泥活性 高、有大量细胞外聚合物存在[4],增加了膜过滤阻力,也是膜比较大出水量降低的原因。
2.6 氨氮的去除
在膜生物反应器中,由于污泥泥龄长,而且溶解氧充足,有利于硝化菌生长,因此氨氮去除良好。试验期间内,进水氨氮浓度为10~20mg/L,其平均值为16mg/L,出水氨氮浓度<1mg/L,氨氮去除率在97%以上。
3 膜生物反应器的经济分析
膜生物反应器技术具有出水水质良好、运行管理简单、占地面积小等优点,是污水回用的适用技术。本研究对一个规模为806m3/d居住区污水回用工程分别采用厌氧→好氧→絮凝→沉淀→过滤→消毒工艺(以下简称工艺1)和中空膜生物床工艺(以下简称工艺2)进行了初步设计,同时进行了经济分析和比较。经济分析和比较依照有关手册进行[5]。就出水水质而言,工艺2出水的浊度、SS、COD和NH3-N优于工艺1,但是出水中的NO3--N会劣于工艺1。经济分析比较的主要结论见表6。
比较项目 | 工艺1 | 工艺2 |
主要构筑物的基建投资(万元) | 110.68 | 39.72 |
主要设备、材料的基建投资(万元) | 76.60 | 7.30 |
总基建投资(万元) | 187.28 | 47.02 |
单位处理水量的基建投资[元/(m3.d)] | 2325 | 583 |
单位处理水量的电力消耗(kW.h/m3【生活污水处理设备】) | 0.631 | 0.988 |
单位处理水量的运行费用(元/m3) | 1.08 | 1.50 |
注 *膜的费用计入运行费用 。 |
根据以上分析可以看出,工艺1的总基建投资是工艺2的2.78倍。由于目前国产膜组件的成本较高且工作寿命较低,更换膜组件的费用占了运行费用的约50%,如果膜组件的费用可以减低20%,工艺2的运行费用与工艺1的基本持平。由于工艺2的基建费用低,它的企业内部收益率高于工艺1。?
本文版权归北京中天恒远环保设备有限公司所有,主要从事污水处理设备、水处理设备生产及污水处理技术专项工作等,转载请注明http://www.ztscl.com.cn出处。