微氧膜生物反应器如何应用在废水处理中的详情介绍(图)
今天为广大朋友介绍的是—微氧膜生物反应器如何应用在废水处理中 MBR反应器由生物反应器和膜组件两部分构成,膜组件具有截留污水中污泥和大分子有机物的作用,代替传统生物处理的末端二沉池,使系统内保持较高的污泥浓度,具有处理效果好、污泥产量小等优点。因其结构特点能够实现水力停留时间与污泥停留时间互不影响,是一种很有发展前景的污水处理技术。但传统的好氧MBR中需要大量曝气以保证较高的污泥浓度,不但成本高且容易引起污泥膨胀,影响处理效果。针对这一问题有研究者减小MBR中的曝气量,发现不但能保证较高的污泥浓度和处理效果,还能有效减少剩余污泥产量,实现有机污泥零排放。廖志民通过兼氧MBR工艺成功实现污水污泥同步去除,不但出水水质能达到深度处理水平(出水COD约14.68mg/L),而且生成和老化的污泥量基本保持平衡,无需排泥。初里冰等用此工艺处理低C/N的生活污水,COD和氨氮去除率分别达94%和77%以上,MBR中微量的氧气提高了硝化菌的活性,且有效控制在亚硝化阶段,亚硝氮直接被反硝化菌转化为氮气,既减少了曝气的能量消耗又缩短了除氮路径,高效节能地实现对总氮的去除。微氧MBR对污泥的截留作用使其在保证较高污泥浓度的同时也有很长的污泥龄(可达30d),有助于世代周期长的微生物如厌氧氨氧化菌(AnAOB)的生长,从而实现短程硝化-厌氧氨氧化-反硝化(SNAD)在同一反应器中共同协作。 MBR中少量的氧气使氨氧化菌(AerAOB)存活,AerAOB以氧气作为电子受体将氨氮转化为亚硝氮,此过程将系统中微量的氧气全部消耗掉形成无氧环境,有利于AnAOB和反硝化菌的生长,AnAOB将AerAOB产生的亚硝氮和系统中多余的氨氮转化为氮气和硝氮(厌氧氨氧化过程),此时大部分的有机氮已被去除,但由于硝氮的存在总氮不能去除完全,反硝化菌则把剩余的硝氮转化为氮气,因此,AerAOB、AnAOB和反硝化菌三者共同作用将有机氮转化为氮气,实现氮的完全去除。XiaojingZhang等在DO为0.15mg/L的MBR中研究了不同进水氨氮对AerAOB和AnAOB的影响,结果表明,高浓度氨氮(200mg/L)更有利于AerAOB和AnAOB活性和多样性的增加,氮的去除率也随之提高。因为系统中的氧气主要被AerAOB利用,高浓度氨氮为AerAOB提供充足的营养物质保证其较高的生物活性,使系统内大部分甚至全部氧气被消耗,进而提高了厌氧菌AnAOB的活性。MBR工艺中膜组件对污泥和大分子有机物截留的同时对其自身的污染是难免的,这使得MBR在实际应用中成本增加。膜污染是指水中微生物以及杂质附着在膜上导致膜通量降低,从而降低了系统的稳定性,缩短了膜组件寿命。微氧MBR中由于活性污泥浓度高,微生物在去除水中污染物的同时也会分解膜表面的污染成分,且氧气的通入有利于对膜表面附着物的冲刷,进而有效减小膜污染,增加膜组件的使用周期。因此,微氧技术应用于MBR中不仅提高了该系统去除C、N、P等污染物的能力,还有效减轻对膜组件的污染,使膜污染不再是MBR在实际应用中的障碍。
污水处理设备联系方式: 销售热线:010-8022-5898 手机号码:186-1009-4262 (责任编辑:李德馨) |